Coverage Analysis for High-Speed Railway Communications with Narrow-Strip-Shaped Cells over Suzuki Fading Channels

Author:

Lin Shenghong1,Wang Hongyan1,Li Weiyong1,Wang Jinyuan23ORCID

Affiliation:

1. Jiangsu Province Service Customization Network Application Engineering Research Center, Nanjing Vocational College of Information Technology, Nanjing 210023, China

2. School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. Chuan and Zang Smart Tourism Engineering Research Center of Colleges and Universities of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China

Abstract

Unlike circular cell coverage in public land mobile communications, narrow-strip-shaped cell coverage should be considered in high-speed railway (HSR) communications. Moreover, for the coverage analysis in HSR communications, most works ignore the effect of small-scale fading, which results in an inaccurate coverage performance evaluation. In this paper, we focus on the coverage analysis for HSR communications with narrow-strip-shaped cells over the Suzuki fading channel, where the composite channel fading includes path loss, lognormal shadowing, and Rayleigh-distributed small-scale fading. Based on the channel model, we first analyze the statistical characteristic of the received signal-to-noise ratio. Then, we derive analytical expressions of the edge coverage probability (ECP) and the percentage of cell coverage area (CCA). To link the edge coverage performance and the average coverage performance of a cell, we express the percentage of CCA as a summation of the ECP and a positive increment. As special cases, we also obtain the coverage performance expressions for the systems without small-scale fading. Through Monte Carlo simulations, the accuracy of the derived expressions is verified. Numerical results also show that the small-scale fading has a strong effect on coverage performance and cannot be ignored. In addition, the effects of key parameters are also discussed.

Funder

open research fund of the Chuan and Zang Smart Tourism Engineering Research Center of Colleges and Universities of Sichuan Province

Scientific Research Foundation for High-level Talents in NJCIT

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Project entrusted by NJUPT Communication Network Industry Research Institute Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3