Abstract
Membrane technologies have been widely applied in surface water treatment for drinking water purification. The main obstacles to the large scale application of membranes include membrane fouling, energy consumption and high investment. This study systematically investigated the performance of a hybrid system including in-situ coagulation and membrane module. The key parameters of a membrane system, including initial flux, operation mode (intermediate or continuous, time intervals, backwashing and aeration) was comprehensively investigated. In addition, the treatment performance in terms of turbidity, organic matter removal, membrane fouling and cleaning, and the effect of coagulants, were also studied. It was found that flat ceramic membranes with in-situ coagulation for surface water treatment performed much better without aeration and frequent backwashing, which gave interesting and important implications for future applications of a flat ceramic membrane, especially in drinking water purification. The hybrid system can achieve a high-water flux of 150 L/m2·h (LMH) for 8 h operation without aeration and backwash. The removal of turbidity, UV254 and COD can achieve 99%, 85% and 81%, respectively. The cake layer on the membrane surface formed from the coagulation flocs turned out to prevent the membrane to be exposed to organic pollutant immediately which minimized the fouling problem. In addition, the fouling layer on the membrane surface can be easily cleaned by air scouring and backwash at the end of experiments, with a water flux recovery of higher than 90%. These results in this study provided an alternative strategy for membrane fouling control and energy conservation.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献