Membrane Fouling and Performance of Flat Ceramic Membranes in the Application of Drinking Water Purification

Author:

Meng ShujuanORCID,Zhang Minmin,Yao Meng,Qiu ZhuguoORCID,Hong Yubin,Lan Weiguang,Xia Haiping,Jin XueORCID

Abstract

Membrane technologies have been widely applied in surface water treatment for drinking water purification. The main obstacles to the large scale application of membranes include membrane fouling, energy consumption and high investment. This study systematically investigated the performance of a hybrid system including in-situ coagulation and membrane module. The key parameters of a membrane system, including initial flux, operation mode (intermediate or continuous, time intervals, backwashing and aeration) was comprehensively investigated. In addition, the treatment performance in terms of turbidity, organic matter removal, membrane fouling and cleaning, and the effect of coagulants, were also studied. It was found that flat ceramic membranes with in-situ coagulation for surface water treatment performed much better without aeration and frequent backwashing, which gave interesting and important implications for future applications of a flat ceramic membrane, especially in drinking water purification. The hybrid system can achieve a high-water flux of 150 L/m2·h (LMH) for 8 h operation without aeration and backwash. The removal of turbidity, UV254 and COD can achieve 99%, 85% and 81%, respectively. The cake layer on the membrane surface formed from the coagulation flocs turned out to prevent the membrane to be exposed to organic pollutant immediately which minimized the fouling problem. In addition, the fouling layer on the membrane surface can be easily cleaned by air scouring and backwash at the end of experiments, with a water flux recovery of higher than 90%. These results in this study provided an alternative strategy for membrane fouling control and energy conservation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3