Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals

Author:

Yedukondalu Jammisetty1ORCID,Sharma Lakhan Dev1ORCID

Affiliation:

1. School of Electronics Engineering, VIT-AP University, Amaravati 522237, Andhra Pradesh, India

Abstract

Background: Portable electroencephalogram (EEG) systems are often used in health care applications to record brain signals because their ease of use. An electrooculogram (EOG) is a common, low frequency, high amplitude artifact of the eye blink signal that might confuse disease diagnosis. As a result, artifact removal approaches in single EEG portable devices are in high demand. Materials: Dataset 2a from the BCI Competition IV was employed. It contains the EEG data from nine subjects. To determine the EOG effect, each session starts with 5 min of EEG data. This recording lasted for two minutes with the eyes open, one minute with the eyes closed, and one minute with eye movements. Methodology: This article presents the automated removal of EOG artifacts from EEG signals. Circulant Singular Spectrum Analysis (CiSSA) was used to decompose the EOG contaminated EEG signals into intrinsic mode functions (IMFs). Next, we identified the artifact signal components using kurtosis and energy values and removed them using 4-level discrete wavelet transform (DWT). Results: The proposed approach was evaluated on synthetic and real EEG data and found to be effective in eliminating EOG artifacts while maintaining low frequency EEG information. CiSSA-DWT achieved the best signal to artifact ratio (SAR), mean absolute error (MAE), relative root mean square error (RRMSE), and correlation coefficient (CC) of 1.4525, 0.0801, 18.274, and 0.9883, respectively. Comparison: The developed technique outperforms existing artifact suppression techniques according to performance measures. Conclusions: This advancement is important for brain science and can contribute as an initial pre-processing step for research related to EEG signals.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3