Identifying the Contributions of Multi-Source Data for Winter Wheat Yield Prediction in China

Author:

Cao Juan,Zhang Zhao,Tao Fulu,Zhang Liangliang,Luo Yuchuan,Han Jichong,Li Ziyue

Abstract

Wheat is a leading cereal grain throughout the world. Timely and reliable wheat yield prediction at a large scale is essential for the agricultural supply chain and global food security, especially in China as an important wheat producing and consuming country. The conventional approach using either climate or satellite data or both to build empirical and crop models has prevailed for decades. However, to what extent climate and satellite data can improve yield prediction is still unknown. In addition, socio-economic (SC) factors may also improve crop yield prediction, but their contributions need in-depth investigation, especially in regions with good irrigation conditions, sufficient fertilization, and pesticide application. Here, we performed the first attempt to predict wheat yield across China from 2001 to 2015 at the county-level by integrating multi-source data, including monthly climate data, satellite data (i.e., Vegetation indices (VIs)), and SC factors. The results show that incorporating all the datasets by using three machine learning methods (Ridge Regression (RR), Random Forest (RF), and Light Gradient Boosting (LightGBM)) can achieve the best performance in yield prediction (R2: 0.68~0.75), with the most individual contributions from climate (~0.53), followed by VIs (~0.45), and SC factors (~0.30). In addition, the combinations of VIs and climate data can capture inter-annual yield variability more effectively than other combinations (e.g., combinations of climate and SC, and combinations of VIs and SC), while combining SC with climate data can better capture spatial yield variability than others. Climate data can provide extra and unique information across the entire growing season, while the peak stage of VIs (Mar.~Apr.) do so. Furthermore, incorporating spatial information and soil proprieties into the benchmark models can improve wheat yield prediction by 0.06 and 0.12, respectively. The optimal wheat prediction can be achieved with approximately a two-month leading time before maturity. Our study develops timely and robust methods for winter wheat yield prediction at a large scale in China, which can be applied to other crops and regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3