Ship Detection in Multispectral Satellite Images Under Complex Environment

Author:

Xie XiaoyangORCID,Li Bo,Wei Xingxing

Abstract

Ship detection in multispectral remote-sensing images is critical in marine surveillance applications. The previously proposed ship-detection methods for multispectral satellite imagery usually work well under ideal conditions. When meeting complex environments such as shadows, mists, or clouds, they fail to detect ships. To solve this problem, we propose a novel spectral-reflectance-based ship-detection method. Research has shown that different materials have unique reflectance curves in the same spectral wavelength range. Based on this observation, we present a new feature using the reflectance gradient across multispectral bands. Moreover, we propose a neural network called lightweight fusion networks (LFNet). This network combines the aforementioned reflectance and the color information of multispectral images to jointly verify the regions with ships. The method utilizes a coarse-to-fine detection framework because of the large-sense-sparse-targets situation in remote-sensing images. In the coarse stage, the proposed reflectance feature vector is used to input the classifier to rule out the regions without ships. In fine detection, the LFNet is used to verify true ships. Compared with some traditional methods that merely depend on appearance features in images, the proposed method takes advantage of employing the reflectance variance in objects between each band as additional information. Extensive experiments have been conducted on multispectral images from four satellites under different weather and environmental conditions to demonstrate the effectiveness and efficiency of the proposed method. The results show that our method can still achieve good performance even under harsh weather conditions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anti-Drone Detection in Aerial Multispectral Images;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Improving RGB-infrared object detection with cascade alignment-guided transformer;Information Fusion;2024-05

3. Detecting Marine pollutants and Sea Surface features with Deep learning in Sentinel-2 imagery;ISPRS Journal of Photogrammetry and Remote Sensing;2024-04

4. Monitoring Maritime Ship Characteristics Using Satellite Remote Sensing Data from Different Sensors;Ocean Science Journal;2024-01-30

5. Advancements in Ship Detection: Comparative Analysis of Optical and Hyperspectral Sensors;2023 6th International Conference on Signal Processing and Information Security (ICSPIS);2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3