Optimized Segmentation Based on the Weighted Aggregation Method for Loess Bank Gully Mapping

Author:

Ding Hu,Liu Kai,Chen Xiaozheng,Xiong LiyangORCID,Tang Guoan,Qiu FangORCID,Strobl JosefORCID

Abstract

The Chinese Loess Plateau suffers severe gully erosion. Gully mapping is a fundamental task for gully erosion monitoring in this region. Among the different gully types in the Loess Plateau, the bank gully is usually regarded as the most important source for the generation of sediment. However, approaches for bank gully extraction are still limited. This study put forward an integrated framework, including segmentation optimization, evaluation and Extreme Gradient Boosting (XGBoost)-based classification, for the bank gully mapping of Zhifanggou catchment in the Chinese Loess Plateau. The approach was conducted using a 1-m resolution digital elevation model (DEM), based on unmanned aerial vehicle (UAV) photogrammetry and WorldView-3 imagery. The methodology first divided the study area into different watersheds. Then, segmentation by weighted aggregation (SWA) was implemented to generate multi-level segments. For achieving an optimum segmentation, area-weighted variance (WV) and Moran’s I (MI) were adopted and calculated within each sub-watershed. After that, a new discrepancy metric, the area-number index (ANI), was developed for evaluating the segmentation results, and the results were compared with the multi-resolution segmentation (MRS) algorithm. Finally, bank gully mappings were obtained based on the XGBoost model after fine-tuning. The experiment results demonstrate that the proposed method can achieve superior segmentation compared to MRS. Moreover, the overall accuracy of the bank gully extraction results was 78.57%. The proposed approach provides a credible tool for mapping bank gullies, which could be useful for the catchment-scale gully erosion process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3