An Optimized Faster R-CNN Method Based on DRNet and RoI Align for Building Detection in Remote Sensing Images

Author:

Bai TongORCID,Pang Yu,Wang JunchaoORCID,Han Kaining,Luo Jiasai,Wang Huiqian,Lin Jinzhao,Wu Jun,Zhang Hui

Abstract

In recent years, the increase of satellites and UAV (unmanned aerial vehicles) has multiplied the amount of remote sensing data available to people, but only a small part of the remote sensing data has been properly used; problems such as land planning, disaster management and resource monitoring still need to be solved. Buildings in remote sensing images have obvious positioning characteristics; thus, the detection of buildings can not only help the mapping and automatic updating of geographic information systems but also have guiding significance for the detection of other types of ground objects in remote sensing images. Aiming at the deficiency of traditional building remote sensing detection, an improved Faster R-CNN (region-based Convolutional Neural Network) algorithm was proposed in this paper, which adopts DRNet (Dense Residual Network) and RoI (Region of Interest) Align to utilize texture information and to solve the region mismatch problems. The experimental results showed that this method could reach 82.1% mAP (mean average precision) for the detection of landmark buildings, and the prediction box of building coordinates was relatively accurate, which improves the building detection results. Moreover, the recognition of buildings in a complex environment was also excellent.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

2. Image Fusion in Remote Sensing Applications: A Review;Pandit;Int. J. Comput. Appl.,2015

3. Gradient-based learning applied to document recognition;LeCun;Proc. IEEE,1998

4. A Fast Learning Algorithm for Deep Belief Nets

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3