Deep-Learning-Based Polar-Body Detection for Automatic Cell Manipulation

Author:

Wang Yuqing,Liu Yaowei,Sun Mingzhu,Zhao Xin

Abstract

Polar-body detection is an essential and crucial procedure in various automatic cell manipulations. The polar body can only be observed when it is located near the focal plane of the microscope, so we need to detect the polar body during cell rotation in cell manipulations. However, three-dimensional cell rotation by micropipette causes polar-body defocus and cell/polar-body deformation, which have not been discussed in existing image-level polar-body-detection approaches. Moreover, varying sizes of the polar bodies increase the difficulty of polar-body detection. In this paper, we propose a deep-learning-based framework to realize polar-body detection in cell rotation. The detection problem is interpreted as image segmentation, which separates the polar body from the background. Then, we improve U-net, which is a typical convolutional neural network (CNN) for medical-image segmentation, so that the network can be applied to polar-body detection, especially for the detection of defocused polar bodies and polar bodies of different sizes. For CNN training, we also designed a particular image-transformation method to simulate more cell-rotation situations, including cell- and polar-body deformation, so that the deformed polar body in cell rotation would be detected by the proposed method. Experiment results show that our method achieves high detection accuracy of 98.7% on a test dataset of 1000 images, and performs well in cell-rotation processes. This method can be applied to various automatic cell manipulations in the future.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3