Abstract
Quartz crystal microbalance (QCM) is still a new high-precision surface detection technique. However, the adsorption quality detected by the QCM currently contains a solvent-coupling quality and cannot separate the actual biomolecular mass. Local surface plasmon resonance (LSPR) can detect the mass of biomolecules, but requires a certain contrast between the solvent of the surrounding medium and the refractive index of the adsorbed layer. The sensor chip, combining two compatible technologies, can realize the simultaneous detection of biomolecules and improve the refractive index sensitivity. The structure of our chip is to prepare the ring-shaped gold electrode on the upper surface of the quartz crystal, the circular gold electrode on the bottom surface, and the spherical gold nanoparticles arrays in the center region of the ring electrode to form a QCM/LSPR dual-technology chip. Through simulation, we finally get the size of the best energy trap by the two electrodes on the upper surface and the lower surface: the ring-top electrode with a thickness of 100 nm, an inner diameter of 4 mm, and an outer diameter of 8 mm; and the bottom electrode with a thickness of 100 nm and a radius of 6 mm. By comparing the refractive index sensitivity, we chose a spherical gold nanoparticle with a radius of 30 nm and a refractive sensitivity of 61.34 nm/RIU to design the LSPR sensor chip.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献