An Efficient Analytical Method for Analyzing the Nonlinear Fractional Klein–Fock–Gordon Equations

Author:

Alyousef Haifa A.,Shah RasoolORCID,Nonlaopon KamsingORCID,El-Sherif Lamiaa S.,El-Tantawy Samir A.ORCID

Abstract

The purpose of this article is to solve a nonlinear fractional Klein–Fock–Gordon equation that involves a recently created non-singular kernel fractional derivative by Caputo–Fabrizio. Motivated by some physical applications related to the fractional Klein–Fock–Gordon equation, we focus our study on this equation and some phenomena rated to it. The findings are crucial and essential for explaining a variety of physical processes. In order to find satisfactory approximations to the offered problems, this work takes into account a modern methodology and fractional operator in this context. We first take the Yang transform of the Caputo–Fabrizio fractional derivative and then implement it to solve fractional Klein–Fock–Gordon equations. We will consider three cases of the nonlinear fractional Klein–Fock–Gordon equation to ensure the applicability and effectiveness of the suggested technique. In order to determine an approximate solution to the fractional Klein–Fock–Gordon equation in the fast convergent series form, we can use the fractional homotopy perturbation transform approach. The numerical simulation is provided to demonstrate the effectiveness and dependability of the suggested method. Furthermore, several fractional orders will be used to describe the behavior of the given solutions. The results achieved demonstrate the high efficiency, ease of use, and applicability of this strategy for resolving other nonlinear issues.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference61 articles.

1. Memoire surquelques questions de geometrieet de mecanique, etsurun nouveau genre de calcul pour resoudreces questions;Liouville;J. Ec. Polytech.,1832

2. Riemann, G.F.B. (1896). Gesammelte Mathematische Werke, Springer.

3. Miller, K.S., and Ross, B. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley.

4. Liu, K., Yang, Z., Wei, W., Gao, B., Xin, D., Sun, C., and Wu, G. (2022). Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables. High Voltage, 1–10.

5. Millimeter-Wave E-Plane Waveguide Bandpass Filters Based on Spoof Surface Plasmon Polaritons;Liu;IEEE Trans. Microw. Theory Tech.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3