Some New Time and Cost Efficient Quadrature Formulas to Compute Integrals Using Derivatives with Error Analysis

Author:

Mahesar Sara,Shaikh Muhammad MujtabaORCID,Chandio Muhammad Saleem,Shaikh Abdul Wasim

Abstract

In this research, some new and efficient quadrature rules are proposed involving the combination of function and its first derivative evaluations at equally spaced data points with the main focus on their computational efficiency in terms of cost and time usage. The methods are theoretically derived, and theorems on the order of accuracy, degree of precision and error terms are proved. The proposed methods are semi-open-type rules with derivatives. The order of accuracy and degree of precision of the proposed methods are higher than the classical rules for which a systematic and symmetrical ascendancy has been proved. Various numerical tests are performed to compare the performance of the proposed methods with the existing methods in terms of accuracy, precision, leading local and global truncation errors, numerical convergence rates and computational cost with average CPU usage. In addition to the classical semi-open rules, the proposed methods have also been compared with some Gauss–Legendre methods for performance evaluation on various integrals involving some oscillatory, periodic and integrals with derivative singularities. The analysis of the results proves that the devised techniques are more efficient than the classical semi-open Newton–Cotes rules from theoretical and numerical perspectives because of promisingly reduced functional cost and lesser execution times. The proposed methods compete well with the spectral Gauss–Legendre rules, and in some cases outperform. Symmetric error distributions have been observed in regular cases of integrands, whereas asymmetrical behavior is evidenced in oscillatory and highly nonlinear cases.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

1. Chapra, S.C. (2012). Applied Numerical Methods with MATLAB, Mc Graw Hill Education Private Ltd.. [3rd ed.].

2. Atkinson, K. (1988). Interpolation Theory, John Wiley & Sons. [2nd ed.].

3. Analysis of Polynomial Collocation and Uniformly Spaced Quadrature Methods for Second Kind Linear Fredholm Integral Equations—A Comparison;Shaikh;Turk. J. Anal. Number Theory,2019

4. New Derivative Based Open Newton-Cotes Quadrature Rules;Zafar;Abstr. Appl. Anal.,2014

5. A unified approach to Newton–Cotes quadrature formulae;Appl. Math. Comput.,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3