Estimation of the Friction Behaviour of Rubber on Wet Rough Road, and Its Application to Tyre Wet Skid Resistance, Using Numerical Simulation

Author:

Zhang Lingxin,Wang Rongqian,Zhou HaichaoORCID,Wang Guolin

Abstract

Tyre wet skid resistance greatly affects vehicle safety, and it is dependent on the frictional behaviour at the tyre–road interface; however, the currently available numerical models, using the finite element method, either neglect the road roughness or obtain the rightness using expensive computed tomography scans, rendering them inefficient and complex. This study aims to present an estimation method of rubber slides on a rough road, to study tyre wet skid resistance. A three-dimensional rough road model was established, using the harmonic superposition method; the sealing effect of the water film on a wet road was modelled in terms of the pseudo-hydrodynamic bearing effect; the contact pressure, hysteresis friction, and water film hydrodynamic lift force were calculated. Subsequently, a friction model was established that accounted for the road surface morphology, tyre properties, sliding speed, and contact pressure. The accuracy of the friction model was experimentally validated, using the published experimental results. The friction model was then adopted, to conduct a study of the wet skid resistance of a 205/55R16 tyre with two different tread patterns. The simulation results were consistent with the experimental results of braking distance on a wet road. Finally, the effects of road roughness, tread rubber, load, and inflation pressure on wet skid resistance were carried out and analysed. The works in this paper have important significance and practical value for the development of high-performance tyres.

Funder

National Natural Science Foundation of China

Postdoctoral Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Longitudinal hydroplaning performance of passenger car tyres;Maleska;Veh. Syst. Dyn.,2021

2. Critical Speeds of Electric Vehicles for Regenerative Braking;Bai;Automot. Innov.,2021

3. Contribution to pavement friction modelling: An introduction of the wetting effect;Kane;Int. J. Pavement Eng.,2019

4. Investigation on wet skid resistance of tread rubber;Wu;Exp. Tech.,2019

5. Calculation of skid resistance from texture measurements;Ueckermann;J. Traffic Transp. Eng.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3