New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications

Author:

Carrillo-Castillo AmandaORCID,Rivas-Valles Brayan G.,Castillo Santos Jesus,Ramirez Marcela Mireles,Luque-Morales Priscy Alfredo

Abstract

Anisotropic materials possess direction dependent properties as a result of symmetry within their structure. Bismuth sulfide (Bi2S3) is an important semiconductor exhibiting anisotropy due to its crystalline and stratified structure. In this manuscript we present a new and straightforward procedure to deposit Bi2S3 thin films on soda lime glass substrates by the chemical bath deposition (CBD) technique. We studied two fundamental parameters, the time to deposit a single layer and the total number of layers deposited. The single layer deposition time was varied between 70 and 100 min and samples were coated with a total of 1, 2, or 3 layers. It is important to note that a fresh aqueous solution was used for every layer. Visible and near infra-red spectroscopy, scanning electron microscopy, X-ray photoelectrons spectroscopy, and X-ray diffraction were the characterization techniques used to study the resulting films. The calculated band gap values were found to be between 1.56 and 2.1 eV. The resulting Bi2S3 deposited films with the new formulation showed uniform morphology and orthorhombic crystalline structure with an average crystallite size of 19 nm. The thickness of the films varied from 190 to 600 nm in direct correlation to the deposition time and in agreement with the number of layers. The XPS results showed the characteristic bismuth doublet centered around 164.11 and 158.8 eV corresponding with the presence of Bi2S3. The symmetry within the Bi2S3 structure makes it a strong anisotropic crystal with potential applications in optoelectronic and photovoltaic devices, catalysis, and photoconductors among others.

Funder

CONACyT

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3