Vehicle Distance Estimation from a Monocular Camera for Advanced Driver Assistance Systems

Author:

Lee SeungyooORCID,Han KyujinORCID,Park Seonyeong,Yang XiaopengORCID

Abstract

The purpose of this study is to propose a framework for accurate and efficient vehicle distance estimation from a monocular camera. The proposed framework consists of a transformer-based object detector, a transformer-based depth estimator, and a distance predictor. The object detector detects various objects that are mostly symmetrical from an image captured by the monocular camera and provides the type of each object and the coordinate information of a bounding box around each object. The depth estimator generates a depth map for the image. Then, the bounding boxes are overlapped with the depth map to extract the depth features of each object, such as the mean depth, minimum depth, and maximum depth of each object. The present study then trained three models—eXtreme Gradient Boosting, Random Forest, and Long Short-Term Memory—to predict the actual distance between the object and the camera based on the type of the object, the bounding box of the object (including its coordinates and size), and the extracted depth features. The present study proposes including the trimmed mean depth of an object to predict the actual distance by excluding the background pixels around an object but within the bounding box of the object. The evaluation results show that the proposed framework outperformed existing studies.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Object Distance Estimation Based on YOLOv8 Using Webcam;2024 IEEE Conference on Computer Applications (ICCA);2024-03-16

2. Passenger Location Estimation in Public Transport: Evaluating Methods and Camera Placement Impact;IEEE Transactions on Intelligent Transportation Systems;2024

3. Ultra-Fast Visible Lane Distance Estimation Using a Single Camera;IEEE Access;2024

4. Motorcycle Detection and Collision Warning Using Monocular Images from a Vehicle;Remote Sensing;2023-11-28

5. A Hybrid Framework for Object Distance Estimation using a Monocular Camera;2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3