Abstract
Recurrent neural networks (RNNs) are widely used to process sequence-related tasks such as natural language processing. Edge cloud computing systems are in an asymmetric structure, where task managers allocate tasks to the asymmetric edge and cloud computing systems based on computation requirements. In such a computing system, cloud servers have no energy limitations, since they have unlimited energy resources. Edge computing systems, however, are resource-constrained, and the energy consumption is thus expensive, which requires an energy-efficient method for RNN job processing. In this paper, we propose a low-overhead, energy-aware runtime manager to process tasks in edge cloud computing. The RNN task latency is defined as the quality of service (QoS) requirement. Based on the QoS requirements, the runtime manager dynamically assigns RNN inference tasks to edge and cloud computing systems and performs energy optimization on edge systems using dynamic voltage and frequency scaling (DVFS) techniques. Experimental results on a real edge cloud system indicate that in edge systems, our method can reduce the energy up to 45% compared with the state-of-the-art approach.
Funder
Key-Area Research and Development Program of Guangdong Province
National Natural Science and Foundation of China
Guangdong Basic and Applied Basic Research Foundation
joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献