The Exact Solutions of Fractional Differential Systems with n Sinusoidal Terms under Physical Conditions

Author:

Seddek Laila F.,El-Zahar Essam R.ORCID,Ebaid AbdelhalimORCID

Abstract

This paper considers the classes of the first-order fractional differential systems containing a finite number n of sinusoidal terms. The fractional derivative employs the Riemann–Liouville fractional definition. As a method of solution, the Laplace transform is an efficient tool to solve linear fractional differential equations. However, this method requires to express the initial conditions in certain fractional forms which have no physical meaning currently. This issue formulated a challenge to solve fractional systems under real/physical conditions when applying the Riemann–Liouville fractional definition. The principal incentive of this work is to overcome such difficulties via presenting a simple but effective approach. The proposed approach is successfully applied in this paper to solve linear fractional systems of an oscillatory nature. The exact solutions of the present fractional systems under physical initial conditions are derived in a straightforward manner. In addition, the obtained solutions are given in terms of the entire exponential and periodic functions with arguments of a fractional order. The symmetric/asymmetric behaviors/properties of the obtained solutions are illustrated. Moreover, the exact solutions of the classical/ordinary versions of the undertaken fractional systems are determined smoothly. In addition, the properties and the behaviors of the present solutions are discussed and interpreted.

Funder

Deputyship for Research and Innovation, the Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Miller, K.S., and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons.

2. Podlubny, I. (1999). Fractional Differential Equations, Academic Press.

3. Hilfer, R. (2000). Applications of Fractional Calculus in Physics, World Scientific Publishing Company.

4. Dynamics of the fractional oscillator;Achar;Phys. A,2001

5. Application of fractional calculus to ultrasonic wave propagation in human cancellous bone;Sebaa;Signal Process.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3