A Recognition Method of Ancient Architectures Based on the Improved Inception V3 Model

Author:

Wang XinyangORCID,Li Jiaxun,Tao Jin,Wu Ling,Mou Chao,Bai Weihua,Zheng Xiaotian,Zhu Zirui,Deng Zhuohong

Abstract

Traditional ancient architecture is a symbolic product of cultural development and inheritance, with high social and cultural value. An automatic recognition model of ancient building types is one possible application of asymmetric systems, and it will be of great significance to be able to identify ancient building types via machine vision. In the context of Chinese traditional ancient buildings, this paper proposes a recognition method of ancient buildings, based on the improved asymmetric Inception V3 model. Firstly, the improved Inception V3 model adds a dropout layer between the global average pooling layer and the SoftMax classification layer to solve the overfitting problem caused by the small sample size of the ancient building data set. Secondly, migration learning and the ImageNet dataset are integrated into model training, which improves the speed of network training while solving the problems of the small scale of the ancient building dataset and insufficient model training. Thirdly, through ablation experiments, the effects of different data preprocessing methods and different dropout rates on the accuracy of model recognition were compared, to obtain the optimized model parameters. To verify the effectiveness of the model, this paper takes the ancient building dataset that was independently constructed by the South China University of Technology team as the experimental data and compares the recognition effect of the improved Inception V3 model proposed in this paper with several classical models. The experimental results show that when the data preprocessing method is based on filling and the dropout rate is 0.3, the recognition accuracy of the model is the highest; the accuracy rate of identifying ancient buildings using our proposed improved Inception V3 model can reach up to 98.64%. Compared with other classical models, the model accuracy rate has increased by 17.32%, and the average training time has accelerated by 2.29 times, reflecting the advantages of the model proposed in this paper. Finally, the improved Inception V3 model was loaded into the ancient building identification system to prove the practical application value of this research.

Funder

Fundamental Research Funds for the Central Universities

Guangdong Basic and Applied Basic Research Foundation

Guangdong Provincial Philosophy and Social Science Planning Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3