FUSION: Measuring Binary Function Similarity with Code-Specific Embedding and Order-Sensitive GNN

Author:

Gao Hao,Zhang Tong,Chen Songqiang,Wang Lina,Yu Fajiang

Abstract

Binary code similarity measurement is a popular research area in binary analysis with the recent development of deep learning-based models. Current state-of-the-art methods often use the pre-trained language model (PTLM) to embed instructions into basic blocks as representations of nodes within a control flow graph (CFG). These methods will then use the graph neural network (GNN) to embed the whole CFG and measure the binary similarities between these code embeddings. However, these methods almost directly treat the assembly code as a natural language text and ignore its code-specific features when training PTLM. Moreover, They barely consider the direction of edges in the CFG or consider it less efficient. The weaknesses of the above approaches may limit the performances of previous methods. In this paper, we propose a novel method called function similarity using code-specific PPTs and order-sensitive GNN (FUSION). Since the similarity of binary codes is a symmetric/asymmetric problem, we were guided by the ideas of symmetry and asymmetry in our research. They measure the binary function similarity with two code-specific PTLM training strategies and an order-sensitive GNN, which, respectively, alleviate the aforementioned weaknesses. FUSION outperforms the state-of-the-art binary similarity methods by up to 5.4% in accuracy, and performs significantly better.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Python Open-Source Code Traceability Model Based on Graph Neural Networks;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

2. Research on Fault Diagnosis Based on Wide Narrow Convolutions Network;2023 3rd New Energy and Energy Storage System Control Summit Forum (NEESSC);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3