The Dynamical Structure of a Warm Core Ring as Inferred from Glider Observations and Along-Track Altimetry

Author:

Meunier ThomasORCID,Pallás Sanz EnricORCID,de Marez CharlyORCID,Pérez JuanORCID,Tenreiro Miguel,Ruiz Angulo Angel,Bower Amy

Abstract

This study investigates the vertical structure of the dynamical properties of a warm-core ring in the Gulf of Mexico (Loop Current ring) using glider observations. We introduce a new method to correct the glider’s along-track coordinate, which is, in general, biased by the unsteady relative movements of the glider and the eddy, yielding large errors on horizontal derivatives. Here, we take advantage of the synopticity of satellite along-track altimetry to apply corrections on the glider’s position by matching in situ steric height with satellite-measured sea surface height. This relocation method allows recovering the eddy’s azimuthal symmetry, precisely estimating the rotation axis position, and computing reliable horizontal derivatives. It is shown to be particularly appropriate to compute the eddy’s cyclo-geostrophic velocity, relative vorticity, and shear strain, which are otherwise out of reach when using the glider’s raw traveled distance as a horizontal coordinate. The Ertel potential vorticity (PV) structure of the warm core ring is studied in details, and we show that the PV anomaly is entirely controlled by vortex stretching. Sign reversal of the PV gradient across the water column suggests that the ring might be baroclinically unstable. The PV gradient is also largely controlled by gradients of the vortex stretching term. We also show that the ring’s total energy partition is strongly skewed, with available potential energy being 3 times larger than kinetic energy. The possible impact of this energy partition on the Loop Current rings longevity is also discussed.

Funder

Secretaría de Energía de México

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3