Early Identification of Root Rot Disease by Using Hyperspectral Reflectance: The Case of Pathosystem Grapevine/Armillaria

Author:

Calamita FedericoORCID,Imran Hafiz Ali,Vescovo Loris,Mekhalfi Mohamed Lamine,La Porta NicolaORCID

Abstract

Armillaria genus represents one of the most common causes of chronic root rot disease in woody plants. Prompt recognition of diseased plants is crucial to control the pathogen. However, the current disease detection methods are limited at a field scale. Therefore, an alternative approach is needed. In this study, we investigated the potential of hyperspectral techniques to identify fungi-infected vs. healthy plants of Vitis vinifera. We used the hyperspectral imaging sensor Specim-IQ to acquire leaves’ reflectance data of the Teroldego Rotaliano grapevine cultivar. We analyzed three different groups of plants: healthy, asymptomatic, and diseased. Highly significant differences were found in the near-infrared (NIR) spectral region with a decreasing pattern from healthy to diseased plants attributable to the leaf mesophyll changes. Asymptomatic plants emerged from the other groups due to a lower reflectance in the red edge spectrum (around 705 nm), ascribable to an accumulation of secondary metabolites involved in plant defense strategies. Further significant differences were observed in the wavelengths close to 550 nm in diseased vs. asymptomatic plants. We evaluated several machine learning paradigms to differentiate the plant groups. The Naïve Bayes (NB) algorithm, combined with the most discriminant variables among vegetation indices and spectral narrow bands, provided the best results with an overall accuracy of 90% and 75% in healthy vs. diseased and healthy vs. asymptomatic plants, respectively. To our knowledge, this study represents the first report on the possibility of using hyperspectral data for root rot disease diagnosis in woody plants. Although further validation studies are required, it appears that the spectral reflectance technique, possibly implemented on unmanned aerial vehicles (UAVs), could be a promising tool for a cost-effective, non-invasive method of Armillaria disease diagnosis and mapping in-field, contributing to a significant step forward in precision viticulture.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3