A Lightweight Keypoint-Based Oriented Object Detection of Remote Sensing Images

Author:

Li YangyangORCID,Mao HetingORCID,Liu Ruijiao,Pei XuanORCID,Jiao LichengORCID,Shang RonghuaORCID

Abstract

Object detection in remote sensing images has been widely used in military and civilian fields and is a challenging task due to the complex background, large-scale variation, and dense arrangement in arbitrary orientations of objects. In addition, existing object detection methods rely on the increasingly deeper network, which increases a lot of computational overhead and parameters, and is unfavorable to deployment on the edge devices. In this paper, we proposed a lightweight keypoint-based oriented object detector for remote sensing images. First, we propose a semantic transfer block (STB) when merging shallow and deep features, which reduces noise and restores the semantic information. Then, the proposed adaptive Gaussian kernel (AGK) is adapted to objects of different scales, and further improves detection performance. Finally, we propose the distillation loss associated with object detection to obtain a lightweight student network. Experiments on the HRSC2016 and UCAS-AOD datasets show that the proposed method adapts to different scale objects, obtains accurate bounding boxes, and reduces the influence of complex backgrounds. The comparison with mainstream methods proves that our method has comparable performance under lightweight.

Funder

National Natural Science Foundation of China

the Key Research and Development Program in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3