A Rapid Segmentation Method of Highway Surface Point Cloud Data Based on a Supervoxel and Improved Region Growing Algorithm

Author:

Zhao Wenshuo1ORCID,Ning Yipeng1,Jia Xiang1,Chai Dashuai1,Su Fei1,Wang Shengli2

Affiliation:

1. College of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

2. College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Mobile laser scanning (MLS) systems have become an important technology for collecting and measuring road information for highway maintenance and reconstruction services. However, the efficient and accurate extraction of unstructured road surfaces from MLS point cloud data collected on highways is challenging. Specifically, the complex and unstructured characteristics of road surveying point cloud data lead to traditional 3D point cloud segmentation. When traditional 3D point cloud algorithms extract unstructured road surfaces, over-segmentation and under-segmentation often occur, which affects efficiency and accuracy. To solve these problems, this study introduces an enhanced road extraction method that integrates supervoxel and trajectory information into a traditional region growing algorithm. The method involves two main steps: first, a supervoxel data structure is applied to reconstruct the original MLS point cloud data, which diminishes the calculation time of the point cloud feature vector and accelerates the merging speed of a similar region; second, the trajectory information of the vehicle is used to optimize the seed selection strategy of the regio growing algorithm, which improves the accuracy of road surface extraction. Finally, two typical highway section tests (flat road and slope road) were conducted to validate the positioning performance of the proposed algorithm in an MLS point cloud. The results show that, compared with three kinds of traditional road surface segmentation algorithms, our method achieves an average extraction recall and precision of 99.1% and 96.0%, and by calculating the recall and precision, an F1 score of 97.5% can be obtained to evaluate the performance of the proposed method, for both datasets. Additionally, our method exhibits an average road surface extraction time that is 45.0%, 50.3%, and 55.8% faster than those of the other three automated segmentation algorithms.

Funder

Natural Science Foundation of Shandong Province

Natural Science Foundation of China

Science and Technology Project of Jiangsu Geological Bureau 2022

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3