Prefix Data Augmentation for Contrastive Learning of Unsupervised Sentence Embedding

Author:

Wang Chunchun1ORCID,Lv Shu1ORCID

Affiliation:

1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

This paper presents prefix data augmentation (Prd) as an innovative method for enhancing sentence embedding learning through unsupervised contrastive learning. The framework, dubbed PrdSimCSE, uses Prd to create both positive and negative sample pairs. By appending positive and negative prefixes to a sentence, the basis for contrastive learning is formed, outperforming the baseline unsupervised SimCSE. PrdSimCSE is positioned within a probabilistic framework that expands the semantic similarity event space and generates superior negative samples, contributing to more accurate semantic similarity estimations. The model’s efficacy is validated on standard semantic similarity tasks, showing a notable improvement over that of existing unsupervised models, specifically a 1.08% enhancement in performance on BERTbase. Through detailed experiments, the effectiveness of positive and negative prefixes in data augmentation and their impact on the learning model are explored, and the broader implications of prefix data augmentation are discussed for unsupervised sentence embedding learning.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3