Adaptive Stacking Ensemble Techniques for Early Severity Classification of COVID-19 Patients

Author:

Kim Gun-Woo1ORCID,Ju Chan-Yang2ORCID,Seok Hyeri3ORCID,Lee Dong-Ho2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea

2. Department of Applied Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea

3. Division of Infectious Disease, Department of Internal Medicine, Korea University College of Medicine, Korea University Ansan Hospital, Ansan 15355, Republic of Korea

Abstract

During outbreaks of infectious diseases, such as COVID-19, it is critical to rapidly determine treatment priorities and identify patients requiring hospitalization based on clinical severity. Although various machine learning models have been developed to predict COVID-19 severity, most have limitations, such as small dataset sizes, the limited availability of clinical variables, or a constrained classification of severity levels by a single classifier. In this paper, we propose an adaptive stacking ensemble technique that identifies various COVID-19 patient severity levels and separates them into three formats: Type 1 (low or high severity), Type 2 (mild, severe, critical), and Type 3 (asymptomatic, mild, moderate, severe, fatal). To enhance the model’s generalizability, we utilized a nationwide dataset from the South Korean government, comprising data from 5644 patients across over 100 hospitals. To address the limited availability of clinical variables, our technique employs data-driven strategies and a proposed feature selection method. This ensures the availability of clinical variables across diverse hospital environments. To construct optimal stacking ensemble models, our technique adaptively selects candidate base classifiers by analyzing the correlation between their predicted outcomes and performance. It then automatically determines the optimal multi-layer combination of base and meta-classifiers using a greedy search algorithm. To further improve the performance, we applied various techniques, including imputation of missing values and oversampling. The experimental results demonstrate that our stacking ensemble models significantly outperform existing single classifiers and AutoML approaches, with improvements of 6.42% and 8.86% in F1 and AUC scores for Type 1, 9.59% and 6.68% for Type 2, and 11.94% and 9.24% for Type 3, respectively. Consequently, our approach improves the prediction of COVID-19 severity levels and potentially assists frontline healthcare providers in making informed decisions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3