Partial Discharge Signal Denoising Algorithm Based on Aquila Optimizer–Variational Mode Decomposition and K-Singular Value Decomposition

Author:

Zhong Jun1,Liu Zhenyu1ORCID,Bi Xiaowen1

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610225, China

Abstract

Partial discharge (PD) is a primary factor leading to the deterioration of insulation in electrical equipment. However, it is hard for traditional methods to precisely extract PD signals in increasingly complex engineering environments. This paper proposes a new PD signal denoising method combining Aquila Optimizer–Variational Mode Decomposition (AO-VMD) and K-Singular Value Decomposition (K-SVD) algorithms. Firstly, the AO algorithm optimizes critical parameters of the VMD algorithm. For the PD signal overwhelmed by noise, the AO-VMD algorithm can decompose it and reconstruct it by using kurtosis. In this process, the majority of the noise is removed, and the characteristics of the original signal are shown. Subsequently, the K-SVD algorithm performs sparse decomposition on the signal after OA-VMD, constructs a learned dictionary, and captures the characteristics of the signal for continuous learning and updating. After the dictionary learning is completed, the best matching atoms from the dictionary are selected to precisely reconstruct the original noiseless signal. Finally, the proposed method is compared with three traditional algorithms, Adaptive Ensemble Empirical Mode Decomposition (AEEMD), SVD-VMD, and the Adaptive Wavelet Multilevel Soft Threshold algorithm, on the simulated signal and the actual engineering signal. The results both demonstrate that the algorithm proposed by this paper has superior noise reduction and signal extraction performance.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3