Material Properties and Structure of Al-Mg-Si Alloy Thin-Walled Profiles with Different Alloy Compositions and Aging Processes

Author:

Guo Hui12,Li Zhen1,Tan Jianping1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. Ningbo Xusheng Group Co., Ltd., Ningbo 315806, China

Abstract

Thin-walled Al-Mg-Si alloy profiles with different compositions and aging states were prepared using the heating and extrusion process. The properties and structure of the profiles were then investigated using a metallographic microscope, scanning electron microscope, projection electron microscope, and universal testing machine. The results show that the yield strength and tensile strength of the profile increases with the increase in total Mg + Si content, and ductility is reduced. If the total Mg + Si content is too high or too low, the crush performance of the material would decrease. Compared with the under-aged and near-peak-aged states, the three types of AI-Mg-Si alloy thin-walled profiles at the over-aged state have better effective energy absorption during crushing and higher bending angle; however, the tensile strength of the profile is optimal at the near-peak-aged state. The effects of alloy composition and aging process on material strength and crushing energy absorption are mainly attributed to the grain structure and differences in precipitation. For coarse grain structures, the grain boundary precipitate free zones are wider, which decreases the profile ductility. Simultaneously, an increase in primary strengthening phases in the grains would increase the profile strength.

Funder

National Basic Research Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3