Using Integrated Multi-Omics to Explore the Differences in the Three Developmental Stages of Thelephora ganbajun Zang

Author:

Zhang Zihan12ORCID,Gai Hongzhen12,Sha Tao12

Affiliation:

1. Department of the State Key Laboratory for Conservation and Utilization of BioResources in Yunnan, Yunnan University, Kunming 650504, China

2. Department of Biology, School of Life Sciences, Chenggong Campus, Yunnan University, Kunming 650091, China

Abstract

Thelephora ganbajun Zang, a rare wild macrofungus, has significant culinary and medicinal value. However, it also has a high cost attributed to its inability to achieve artificial cultivation and its strict environmental requirements. To reveal the intricacies of its development, we conducted a comprehensive analysis of the proteome and metabolome in three pivotal developmental stages: the mycelium, the primordium, and the fruiting body. In our investigation, genes exhibiting various expression levels across multi-omics analyses were identified as potential candidates implicated in growth, development, or metabolic regulation. The aim of this study was to provide a clearer direction for understanding the fundamental metabolic activities and growth stages of this species. Label-free proteomic sequencing revealed a critical juncture in ectomycorrhiza formation, particularly during the transition from the mycelium to the primordium. Secreted proteins, signaling proteins, membrane proteins, and proteins with unidentified functions were rapidly synthesized, with certain amino acids contributing to the synthesis of proteins involved in signaling pathways or hormone precursor substances. In the metabolomics analysis, the classification of secondary metabolites revealed a noteworthy increase in lipid substances and organic acids, contributing to cell activity. The early mycelial development stage exhibited vigorous cell metabolism, contrasting with a decline in cell division activity during fruiting body formation. In our findings, the integration of metabolomic and transcriptomic data highlighted the potential key role of folate biosynthesis in regulating early ectomycorrhiza development. Notably, the expression of alkaline phosphatase and dihydrofolate synthase genes within this pathway was significantly up-regulated in the mycelium and fruiting body stages but down-regulated in the primordium stage. This regulation primarily influences dihydrofolate reductase activity and B vitamin synthesis.

Funder

State Key Laboratory for Conservation and Utilization of BioResources in Yunnan

“Double First-Class”

Regional Science Fund Project: Research on the Genetic Diversity and Establishment of Thelephora ganbajun Zang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3