Interpretability in Sentiment Analysis: A Self-Supervised Approach to Sentiment Cue Extraction

Author:

Sun Yawei12ORCID,He Saike3ORCID,Han Xu4,Luo Yan5

Affiliation:

1. Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876, China

3. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

4. Institute of Scientific and Technical Information of China, Beijing 100038, China

5. Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China

Abstract

In this paper, we present a novel self-supervised framework for Sentiment Cue Extraction (SCE) aimed at enhancing the interpretability of text sentiment analysis models. Our approach leverages self-supervised learning to identify and highlight key textual elements that significantly influence sentiment classification decisions. Central to our framework is the development of an innovative Mask Sequence Interpretation Score (MSIS), a bespoke metric designed to assess the relevance and coherence of identified sentiment cues within binary text classification tasks. By employing Monte Carlo Sampling techniques optimized for computational efficiency, our framework demonstrates exceptional effectiveness in processing large-scale text data across diverse datasets, including English and Chinese, thus proving its versatility and scalability. The effectiveness of our approach is validated through extensive experiments on several benchmark datasets, including SST-2, IMDb, Yelp, and ChnSentiCorp. The results indicate a substantial improvement in the interpretability of the sentiment analysis models without compromising their predictive accuracy. Furthermore, our method stands out for its global interpretability, offering an efficient solution for analyzing new data compared to traditional techniques focused on local explanations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3