Prediction of Grain Porosity Based on WOA–BPNN and Grain Compression Experiment

Author:

Chen Jiahao12ORCID,Li Jiaxin1ORCID,Zheng Deqian123,Zheng Qianru1,Zhang Jiayi1,Wu Meimei1,Liu Chaosai1

Affiliation:

1. College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Henan Key Laboratory of Grain Storage Facility and Safety, Zhengzhou 450001, China

3. Henan International Joint Laboratory of Modern Green Ecological Storage System, Zhengzhou 450001, China

Abstract

The multi-field coupling of grain piles in grain silos is a focal point of research in the field of grain storage. The porosity of grain piles is a critical parameter that affects the heat and moisture transfer in grain piles. To investigate the distribution law of the bulk grain pile porosity in grain silos, machine learning algorithms were incorporated into the prediction model for grain porosity. Firstly, this study acquired the database by conducting compression experiments on grain specimens and collecting data from the literature. The back propagation neural network (BPNN) algorithm was optimized using three metaheuristic algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and whale optimization algorithm (WOA)). Five machine learning models (GA–BPNN, PSO–BPNN, WOA–BPNN, BPNN, and random forest (RF)) were developed to predict the grain porosity using three input parameters (vertical pressure, grain type, and moisture content). The five models were assessed using four evaluation metrics: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), to determine the best porosity prediction model. Finally, the generalization ability of the best prediction model was verified using the results of the grain cell box experiment on wheat piles. The results indicated that the WOA–BPNN model was the best prediction model with an R2 value of 0.9542, an RMSE value of 0.0079, an MAE value of 0.0044, and an MAPE value of 1.1467%. The WOA–BPNN model demonstrated strong generalization ability, confirming the feasibility of using this model to predict grain porosity. It also established an expression for the relationship between wheat porosity and the vertical pressure of the grain pile. This study presents a machine learning prediction method for determining the porosity of grain piles. The obtained porosity distribution law serves as a crucial basis for conducting comprehensive multi-field coupling analysis of grain piles and offers theoretical support for safe grain storage.

Funder

National Natural Science Foundation of China

Joint Fund for Provincial Science and Technology R&D Programs in Henan Province

Henan Provincial Key Laboratory of Grain and Oil Warehousing Construction and Safety Open Subjects

Cultivation Program for Young Backbone Teachers of Henan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3