Sensorimotor Control Using Adaptive Neuro-Fuzzy Inference for Human-Like Arm Movement

Author:

Gungor Gokhan1,Afshari Mehdi2

Affiliation:

1. Department of Mechatronics Engineering, Karabuk University, Karabuk 78050, TR, Turkey

2. Deparment of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

In this study, a sensorimotor controller is designed to characterize the required muscle force to enable a robotics system to perform a human-like circular movement. When the appropriate muscle internal forces are chosen, the arm end-point tracks the desired path via joint-space feedback. An objective function of the least-change rate of muscle forces is determined to find suitable feedback gains. The parameter defining the muscle force is then treated as a learning parameter through an adaptive neuro-fuzzy inference system, incorporating the rate of change of muscle forces. In experimental section, the arm motion of healthy subjects is captured using the inertial measurement unit sensors, and then the image of the drawn path is processed. The inertial measurement unit sensors detect each segment motion’s orientation using quaternions, and the image is employed to identify the exact end-point position. Experimental data on arm movement are then utilized in the control parameter computation. The proposed brain–motor control mechanism enhances motion performance, resulting in a more human-like movement.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3