Experimental Study on the Forced Ventilation Safety during the Construction of a Large-Slope V-Shaped Tunnel

Author:

Yi Linghong1,Wang Xiaoni1,Shen Yongjiang1

Affiliation:

1. Institute of Disaster Prevention Science and Safety Technology, School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

The special large-slope V-shaped structure of underwater tunnels changes the ventilation characteristics during tunnel construction, making the traditional experience limited. Therefore, it is urgent to study the influence of the special structure on the safety of the air environment during construction. In this paper, a series of small-scale experiments were conducted to investigate the ventilation characteristics of V-shaped tunnels. The coupled effects of ventilation parameters (distance of duct outlet from working face L0, air velocity at the duct outlet u0) and structural characteristics (digging length Ld, slope of the uphill section θ) were considered. The extreme slope of the V-shaped tunnel of 8% was considered. The flow field and pollutant transport law were determined by using CO as a tracer in the experiments. The results show that u0 has a positive impact on the air return velocity, while Ld has a negative impact, and neither of the other two factors has a significant effect. The transport characteristics of CO in V-shaped tunnels differ from those in flat tunnels, with the former tending to cause unconventional areas of high pollutant concentrations in the horizontal sections. Furthermore, the correlations between CO concentration and distance, ventilation time, and the influence factors discussed in this paper are derived from the experimental results. The conclusions provide guidance for the construction of V-shaped tunnels to prevent air pollution in the construction environment and to improve the working conditions of laborers. Additionally, it can also enrich the ventilation experience in tunnel construction.

Funder

Natural Science Foundation of Hunan Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3