An Improved Data Interpolating Empirical Orthogonal Function Method for Data Reconstruction: A Case Study of the Chlorophyll-a Concentration in the Bohai Sea, China

Author:

Hong Tongfang1ORCID,Qin Rufu1,Xu Zhounan1

Affiliation:

1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

Abstract

Chlorophyll-a (chl-a) serves as a key indicator in water quality and harmful algal blooms (HABs) research. While satellite ocean color data have greatly advanced chl-a research and HABs monitoring, missing data caused by cloud cover and other factors limit the spatiotemporal continuity and the utility of remote sensing data products. The Data Interpolating Empirical Orthogonal Function (DINEOF) method, widely used to reconstruct missing values in remote sensing datasets, is open to improvement in terms of computational accuracy and efficiency. We propose an improved method called Concentration-Stratified DINEOF (CS-DINEOF), which uses a coordinate–value correlative data division strategy to stratify the study area into several subregions based on annual average chl-a concentration. The proposed method clusters data points with similar spatiotemporal patterns, allowing for more targeted and effective reconstruction in each sub-dataset. The feasibility and advantage of the proposed method are tested and evaluated in the experiments of chl-a data reconstruction in the water of the Bohai Sea. Compared with the ordinary DINEOF method, the CS-DINEOF method improves the reconstruction accuracy, with an average Root Mean Square Error (RMSE) reduction of 0.0281 mg/m3, and saves computational time by 228.9%. Furthermore, the gap-free images generated from CS-DINEOF are able to illustrate small variations and details of the chl-a distribution in local areas. We can conclude that the proposed CS-DINEOF method is superior in providing significant insights for water quality and HABs studies in the Bohai Sea region.

Funder

National Key Research and Development Program of China

Innovation Program of Shanghai Municipal Education Commission

Interdisciplinary Project in Ocean Research of Tongji University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3