Cascade-Forward, Multi-Parameter Artificial Neural Networks for Predicting the Energy Efficiency of Photovoltaic Modules in Temperate Climate

Author:

Postawa Karol1ORCID,Czarnecki Michał2ORCID,Wrzesińska-Jędrusiak Edyta2,Łyskawiński Wieslaw3,Kułażyński Marek4ORCID

Affiliation:

1. Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland

2. Department of Technologies, Institute of Technology and Life Sciences—National Research Institute, Falenty, Hrabska Avenue 3, 05-090 Raszyn, Poland

3. Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznan, Poland

4. Innovation and Implementation Company Ekomotor Ltd., Wyścigowa 1A, 53-011 Wrocław, Poland

Abstract

Solar energy is a promising and efficient source of electricity in countries with stable and high sunshine duration. However, in less favorable conditions, for example in continental, temperate climates, the process requires optimization to be cost-effective. This cannot be done without the support of appropriate mathematical and numerical methods. This work presents a procedure for the construction and optimization of an artificial neural network (ANN), along with an example of its practical application under the conditions mentioned above. In the study, data gathered from a photovoltaic system in 457 consecutive days were utilized. The data includes measurements of generated power, as well as meteorological records. The cascade-forward ANN was trained with a resilient backpropagation procedure and sum squared error as a performance function. The final ANN has two hidden layers with nine and six nodes. This resulted in a relative error of 10.78% and R2 of 0.92–0.97 depending on the data sample. The case study was used to present an example of the potential application of the tool. This approach proved the real benefits of the optimization of energy consumption.

Funder

Polish Minister of Science and Higher Education

Publisher

MDPI AG

Reference59 articles.

1. A High-Efficiency Hybrid High-Concentration Photovoltaic System;Zimmermann;Int. J. Heat Mass Transf.,2015

2. (2020). Raport Dotyczący Energii Elektrycznej Wytworzonej z OZE w Mikroinstalacji i Wprowadzonej Do Sieci Dystrybucyjnej (Art. 6a Ustawy o Odnawialnych Źródłach Energii), Polish Energy Regulatory Office.

3. (2022, April 10). EU Market Outlook for Solar Power 2021–2025—SolarPower Europe. Available online: https://www.solarpowereurope.org/insights/market-outlooks/market-outlook.

4. (2018). Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance), EUR-Lex.

5. (2021). Renewable Power Generation Costs 2020, IRENA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3