Dynamic Modeling and Altitude Control for Flying Cars Based on Active Disturbance Rejection Control

Author:

Xu Jie1,Lu Xinjiang1ORCID,Luo Wei1,Sun Hao2,Long Zhenkun1,Xu Yuteng1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. College of Artificial Intelligence, Nankai University, Tianjin 300350, China

Abstract

Flying cars offer huge advantages due to their deformable structure, which can adapt to external environments and mission requirements. They represent a novel system that can realize vertical takeoff and landing. However, the structure of a flying car is complicated, placing higher requirements on modeling accuracy and control effectiveness. Thus, in this paper, a dynamic model of a flying car is proposed by combining a car body, motor, and propellers. Then, a double-loop controller based on active disturbance rejection control is proposed to accurately control its flight altitude. Utilizing the extended state observer, external wind and other disturbances are regarded as an extended state, which can be dynamically observed and compensated to significantly improve tracking accuracy. The effectiveness of the proposed controller is validated through detailed simulations and flight experiments. The proposed controller significantly improves control accuracy and disturbance rejection capability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3