A Novel Data Mining Framework to Investigate Causes of Boiler Failures in Waste-to-Energy Plants

Author:

Wang Dong1,Jiang Lili2ORCID,Kjellander Måns3,Weidemann Eva34,Trygg Johan4,Tysklind Mats4

Affiliation:

1. Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

2. Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden

3. Umeå Energi, SE-901 05 Umeå, Sweden

4. Department of Chemistry, Umeå University, SE-907 36 Umeå, Sweden

Abstract

Examining boiler failure causes is crucial for thermal power plant safety and profitability. However, traditional approaches are complex and expensive, lacking precise operational insights. Although data-driven approaches hold substantial potential in addressing these challenges, there is a gap in systematic approaches for investigating failure root causes with unlabeled data. Therefore, we proffered a novel framework rooted in data mining methodologies to probe the accountable operational variables for boiler failures. The primary objective was to furnish precise guidance for future operations to proactively prevent similar failures. The framework was centered on two data mining approaches, Principal Component Analysis (PCA) + K-means and Deep Embedded Clustering (DEC), with PCA + K-means serving as the baseline against which the performance of DEC was evaluated. To demonstrate the framework’s specifics, a case study was performed using datasets obtained from a waste-to-energy plant in Sweden. The results showed the following: (1) The clustering outcomes of DEC consistently surpass those of PCA + K-means across nearly every dimension. (2) The operational temperature variables T-BSH3rm, T-BSH2l, T-BSH3r, T-BSH1l, T-SbSH3, and T-BSH1r emerged as the most significant contributors to the failures. It is advisable to maintain the operational levels of T-BSH3rm, T-BSH2l, T-BSH3r, T-BSH1l, T-SbSH3, and T-BSH1r around 527 °C, 432 °C, 482 °C, 338 °C, 313 °C, and 343 °C respectively. Moreover, it is crucial to prevent these values from reaching or exceeding 594 °C, 471 °C, 537 °C, 355 °C, 340 °C, and 359 °C for prolonged durations. The findings offer the opportunity to improve future operational conditions, thereby extending the overall service life of the boiler. Consequently, operators can address faulty tubes during scheduled annual maintenance without encountering failures and disrupting production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3