An Ensemble of Convolutional Neural Networks for Audio Classification

Author:

Nanni LorisORCID,Maguolo Gianluca,Brahnam SherylORCID,Paci MichelangeloORCID

Abstract

Research in sound classification and recognition is rapidly advancing in the field of pattern recognition. One important area in this field is environmental sound recognition, whether it concerns the identification of endangered species in different habitats or the type of interfering noise in urban environments. Since environmental audio datasets are often limited in size, a robust model able to perform well across different datasets is of strong research interest. In this paper, ensembles of classifiers are combined that exploit six data augmentation techniques and four signal representations for retraining five pre-trained convolutional neural networks (CNNs); these ensembles are tested on three freely available environmental audio benchmark datasets: (i) bird calls, (ii) cat sounds, and (iii) the Environmental Sound Classification (ESC-50) database for identifying sources of noise in environments. To the best of our knowledge, this is the most extensive study investigating ensembles of CNNs for audio classification. The best-performing ensembles are compared and shown to either outperform or perform comparatively to the best methods reported in the literature on these datasets, including on the challenging ESC-50 dataset. We obtained a 97% accuracy on the bird dataset, 90.51% on the cat dataset, and 88.65% on ESC-50 using different approaches. In addition, the same ensemble model trained on the three datasets managed to reach the same results on the bird and cat datasets while losing only 0.1% on ESC-50. Thus, we have managed to create an off-the-shelf ensemble that can be trained on different datasets and reach performances competitive with the state of the art.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HM–GDM: Hybrid Measures and Graph-Dependent Modeling for Environmental Sound Classification;International Journal of Computational Intelligence Systems;2024-08-12

2. Efficient Deep Neural Network Compression for Environmental Sound Classification on Microcontroller Units;Turkish Journal of Electrical Engineering and Computer Sciences;2024-07-26

3. Detecting Selected Instruments in the Sound Signal;Applied Sciences;2024-07-20

4. BAT-CNN: BirdNet Assisted Training for CNN;2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI);2024-06-21

5. Responding to challenge call for machine learning model development in diagnosing respiratory disease sounds;Journal of Edge Computing;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3