Design and Application of Simulating Cutting Experiment System for Drum Shearer

Author:

Peng Tianhao,Li ChangpengORCID,Zhu Yanmin

Abstract

When the shearer cuts coal or rock with different hardness, it will produce corresponding cutting state information. This paper develops a simulation cutting experiment system for the drum shearer based on similarity theory. It took the spiral cutting drum of a shearer as the research target and derived the principal similarity coefficients through the dimensional analysis method. Meanwhile, this paper designed the structure of the cutting power system and hydraulic system. Then, it chose a certain amount of coal powder as an aggregate, cement 325# as cementing material, sand, and water as auxiliary materials to prepare simulated coal samples. The paper adopted the orthogonal experiment method and used a proportion of cement, sand, and water as the influencing factors in designing a simulated coal sample preparation plan. In addition, it utilized the range analysis method to research the influence of various factors on the density and compressive strength of simulated coal samples. Finally, it conducted simulated coal sample cutting tests. The results show that the density of the simulated coal samples is between 1192.59 Kg/m3–1483.51 Kg/m3, and the compressive strength range reaches 0.16 MPa–3.94 MPa. The density of the simulated coal sample is related to the mass proportion of cement and sand. When the ratio gradually increases, the influence of sand increases. Furthermore, the compressive strength is linearly proportional to the proportion of cement. The self-designed simulation cutting experiment system could effectively carry out the relevant experiments and obtain the corresponding cutting condition signals through the sensors. There are differences in vibration signals generated by cutting different strength materials. Extracting the kurtosis value as the characteristic value can distinguish various cutting modes, which can provide a reliable experimental solution for the research of coal-rock identification.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3