Abstract
During the last three decades, rapid growth of wind energy has led to questions regarding the possible impacts of wind farms on local weather and microclimates. Physically, the increased turbulence due to the wind turbine operation affects the mixing processes, may slightly disturb the pressure and temperature distributions downstream of wind farms and may have an impact on natural ecosystems such as the famous mastic tree population located on the island of Chios in the North Aegean Sea. This study explores the wind farms and their wake effects downstream with a particular focus on the effect on the southern part of the island where the mastic trees cultivation is located. The analysis is carried out with the use of the commercial CFD code ANSYS Fluent. Steady state computations of full 3D Navier–Stokes equations, using the k-ε turbulence closure scheme are carried out. The development of the multiple wake effects of the wind farms and their propagation downstream is examined under low and high turbulence intensities. Results clearly indicate that for both test cases there is no impact to the local microclimate and to the mastic Tree population.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference33 articles.
1. Methodology for the Assessment of Wind Penetration in Non-Interconnected Islandshttp://www.rae.gr/K2/deliberation-ape.html
2. Analysis of Wind Power Penetration in Autonomous Greek Islands
3. Study for the Interconnection of Aegean Islands with the Mainland, Athenshttp://www.desmie.gr/fileadmin/user_upload/Files/Consultations/AIGEA_INTERCONNECTION_PHASE_A.pdf
4. Interconnection Strategy of Islands to the Mainland Grid, Athenshttp://www.rae.gr/cases/C19
5. The effect of islands’ interconnection to the mainland system on the development of renewable energy sources in the Greek power sector
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献