Abstract
Pathological speech such as Oesophageal Speech (OS) is difficult to understand due to the presence of undesired artefacts and lack of normal healthy speech characteristics. Modern speech technologies and machine learning enable us to transform pathological speech to improve intelligibility and quality. We have used a neural network based voice conversion method with the aim of improving the intelligibility and reducing the listening effort (LE) of four OS speakers of varying speaking proficiency. The novelty of this method is the use of synthetic speech matched in duration with the source OS as the target, instead of parallel aligned healthy speech. We evaluated the converted samples from this system using a collection of Automatic Speech Recognition systems (ASR), an objective intelligibility metric (STOI) and a subjective test. ASR evaluation shows that the proposed system had significantly better word recognition accuracy compared to unprocessed OS, and baseline systems which used aligned healthy speech as the target. There was an improvement of at least 15% on STOI scores indicating a higher intelligibility for the proposed system compared to unprocessed OS, and a higher target similarity in the proposed system compared to baseline systems. The subjective test reveals a significant preference for the proposed system compared to unprocessed OS for all OS speakers, except one who was the least proficient OS speaker in the data set.
Funder
H2020 Marie Skłodowska-Curie Actions
Basque Government
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献