Abstract
Machinery with several rotating and stationary components tends to produce non-stationary and random vibration signatures due to the fluctuations in the input loads and process defects due to long hours of operation. Traditional heuristics methods are suitable for the detection of fault signatures, however, they become more complicated when the level of uncertainty or randomness exceeds beyond control. A novel methodology to identify these fault signatures using optimal filtering of vibration data is proposed to eliminate any false alarms and is expected to provide a higher probability of correct diagnosis. In this paper, a detailed pipeline of the algorithms are presented along with the results of the investigation that was carried out. These investigations are performed using open-source vibration data published by the NASA prognostics centre. The performance of these algorithms are evaluated based on the ground truth results published by NASA researchers. Based on the performance of these algorithms several parameters are fine-tuned to ensure generalisation and reliable performance.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献