Effects of External Heat Flux and Exhaust Flow Rate on CO and Soot Yields of Acrylic in a Cone Calorimeter

Author:

Mun Sun-Yeo,Cho Jae-Ho,Hwang Cheol-HongORCID

Abstract

The effects of changes in irradiance level (external heat flux), exhaust flow rate, and hood height on CO and soot yield were examined using a cone calorimeter. Black acrylic, having similar constituents as polymethyl methacrylate, was used as a combustible, and external heat fluxes ranging from 15 to 65 kW/m2 were considered. Both auto and spark ignitions were applied as ignition methods. The difference in auto and spark ignition methods had no effect on CO and soot yields, or on the mass loss rate (MLR), heat release rate (HRR), and effective heat of combustion (EHC), which are global parameters of fire. As the external heat flux increased, the mean MLR and HRR linearly increased while the EHC remained constant. When the external heat flux increased, the mean mass flow rates of CO and CO2 had a directly proportional relationship with the mean MLR. Consequently, CO and CO2 yields remained constant regardless of the external heat flux. In contrast, the mean mass flow rate and mean MLR of soot were linearly proportional as opposed to directly proportional, and the soot yield thus increased linearly with external heat flux. Variations in the exhaust flow rate and hood height, which can alter the velocity and temperature fields in post-flame and plume regions, had almost no impact on CO and soot yields, as well as on MLR and HRR. The results of this study are expected to provide improved insight into conventional approaches on the recognition of CO and soot yields as unique properties of each combustible.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Heat release rate: The single most important variable in fire hazard

2. Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement),2015

3. Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter

4. Development of the Cone Calorimeter—A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption;Babrauskas,1982

5. Rate of heat release measurement using the Cone Calorimeter

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3