Abstract
The present study proposed a method for establishing a linkage representation of the human hand skeletal system. Hand skeletons of 15 male subjects were reconstructed from computed tomography (CT) scans in 10 different postures selected from a natural hand-closing motion. The wrist joint center was estimated as the intersection of the centerline of the metacarpal of the middle finger and the distal wrist crease. The remaining joint centers were kinematically estimated based on the relative motion between the distal bone segment and the proximal bone segment of a given joint. A hand linkage representation was then formed by connecting the derived joint centers. Regression models for predicting internal hand link lengths using hand length as the independent variable were established. In addition, regression models for predicting the joint center coordinates of the thumb carpometacarpal (CMC) and finger metacarpophalangeal (MCP) joints using hand length or hand breadth were established. Our models showed higher R2 values and lower maximum standard errors than the existing models. The findings of the present study can be applied to hand models for ergonomic design and biomechanical modeling.
Funder
Fundamental Research Funds for the Central Universities
National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献