A Comprehensive Application of Machine Learning Techniques for Short-Term Solar Radiation Prediction

Author:

Wang Linhua,Shi JiarongORCID

Abstract

Forecasting the output power of solar PV systems is required for the good operation of the power grid and the optimal management of energy fluxes occurring in the solar system. Before forecasting the solar system’s output, it is essential to focus on the prediction of solar irradiance. In this paper, the solar radiation data collected for two years in a certain place in Jiangsu in China are investigated. The objective of this paper is to improve the ability of short-term solar radiation prediction. Firstly, missing data are recovered through the means of matrix completion. Then the completed data are denoised via robust principal component analysis. To reduce the influence of weather types on solar radiation, spectral clustering is adopted by fusing sparse subspace representation and k-nearest-neighbor to partition the data into three clusters. Next, for each cluster, four neural networks are established to predict the short-term solar radiation. The experimental results show that the proposed method can enhance the solar radiation accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3