Manufacture of 2D-Printed Precision Drug-Loaded Orodispersible Film Prepared from Tamarind Seed Gum Substrate

Author:

Huanbutta KampanartORCID,Sriamornsak Pornsak,Singh Inderbir,Sangnim TanikanORCID

Abstract

Two-dimensional (2D) printing is a simple technology that shows the possibility for the preparation of personalized pharmaceutical dosage forms. This technology can accurately print medicine in different sizes, which can be applied to develop a personalized, drug-loaded orodispersible film for patients with dysphagia. Seed gum from Tamarindus indica Linn was selected as the film former of the printing substrate, and sorbitol was applied as a film plasticizer. Theophylline was used as a printed model drug due to its narrow therapeutic index. From the results, the mechanical properties of the film indicated that increasing the level of sorbitol improved the flexibility and strength of the film, which rendered the gum film suitable as a printing substrate. Conversely, raising portions of the gum (more than 3.5%) led to the use of rigid and stress-resistant films that can crack during the printing process. The Fourier transform infrared result revealed that there was no interaction between theophylline and the gum after the printing process. The printed theophylline was mainly in an amorphous form based on the X-ray diffraction results. Furthermore, theophylline was deposited at the surface of the gum substrate after the drug-printing process, as depicted in the scanning electron microscope images. The printed drug on the orodispersible film can be accurately determined by varying the printing size/repeat. Lastly, the drug was completely released from the orodispersible film within 5 min. The research results showed the possibility of utilizing tamarind seed gum as a potential printing substrate for the 2D drug-printing technique. Moreover, this can be applied as an electronic prescribing system for telemedicine in the future.

Funder

Faculty of Pharmaceutical Science, Burapha University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3