Experimental Analysis of Water Pressure and Temperature Influence on Atomization and Evolution of a Port Water Injection Spray

Author:

Postrioti LucioORCID,Brizi Gabriele,Finori Gian Marco

Abstract

Port water injection (PWI) is considered one of the most promising technologies to actively control the increased knock tendency of modern gasoline direct injection (GDI) engines, which are rapidly evolving with the adoption of high compression ratios and increased brake mean effective pressure levels in the effort to improve their thermal efficiency. For PWI technology, appropriately matching the spray evolution and the intake system design along with obtaining a high spray atomization quality, are crucial tasks for promoting water evaporation so as to effectively cool down the air charge with moderate water consumption and lubricant dilution drawbacks. In the present paper, a detailed experimental analysis of a low-pressure water spray is presented, covering a lack of experimental data on automotive PWI systems. Phase doppler anemometry and fast-shutter spray imaging allowed us to investigate the influence exerted by the injection pressure level and by the water temperature on spray drop size and global shape, obtaining a complete database to be used for the optimization of PWI systems. The obtained results evidence how significant benefits in terms of atomization quality can be obtained by adopting injection pressure and water temperature levels compliant with standard low injection pressure technologies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Paris Agreementhttp://ec.europa.eu/clima/policies/international/negotiations/paris_en

2. Commission Regulation (EU) No 459/2012 Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6)https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0459

3. Monitoring CO2 Emissions from New Passenger Cars and Vans in 2016,2017

4. Groupes Motopropulseurs du Futur pour une Mobilité à faibles Émissions de Carbone;Saliba,2018

5. Advanced Direct Injection Combustion Engine Technologies and Development: Gasoline Engines;Zhao,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3