Abstract
Growing evidence has demonstrated that biomimetic nanovesicles produced from specific cells show bioactive properties such as anti-tumor or anti-inflammatory activities. However, the properties of these nanovesicles are very diverse, depending on their cell sources. In this study, human tonsil-derived mesenchymal stem cells (TMSCs) were used in the production of functional biomimetic nanovesicles with anti-senescence. TMSCs were isolated from human tonsil tissue obtained by tonsillectomy. TMSC-derived nanovesicles (TMSC-NVs) were produced by serial extrusion using a mini-extruder. Western blotting and particle analysis were performed for characterization of TMSC-NVs. They were applied to both replicative and ultraviolet B-induced senescent human dermal fibroblasts in vitro. Following six days of treatment, analysis of the proliferation and senescence level of fibroblasts was performed using cell counting and senescence-associated β-galactosidase assay, respectively. Treatment with TMSC-NVs enhanced the cell proliferation and reduced the activity of senescence-associated β-galactosidase in both replicative and ultraviolet B-induced senescent cells. Treatment with TMSC-NVs resulted in increased expression of extracellular matrix and anti-oxidant genes. Treatment with TMSC-NVs resulted in reduced expression of vinculin in focal adhesion. These results show that TMSC-NVs have an effect on recovering from cellular senescence by oxidative stress and can be applied as useful materials for the development of skin rejuvenation.
Funder
National Research Foundation of Korea
Yonsei University College of Medicine
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science