Mechanical Properties, Wettability and Thermal Degradation of HDPE/Birch Fiber Composite

Author:

Koffi AgbelenkoORCID,Mijiyawa Fayçal,Koffi Demagna,Erchiqui FouadORCID,Toubal Lotfi

Abstract

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference57 articles.

1. Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties

2. Structure and mechanical/abrasive wear behavior of a purely natural composite: black-fiber palm wood

3. Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation

4. Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene

5. Natural Fiber Composites (NFC) Market Size, Share & Trends Analysis Report by Raw Material, by Matrix, by Technology (Injection Molding, Compression Molding, Pultrusion), by Application, and Segment Forecasts, 2018–2024https://www.marketresearch.com/Grand-View-Research-v4060/Natural-Fiber-Composites-NFC-Size-11657062/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3