Abstract
This research aimed to scale up the production of starch-based super water absorbent (SWA) and to validate the practical benefits of SWA for agricultural applications. SWA was successfully prepared in an up-scaling production by radiation-induced graft polymerization of acrylic acid onto cassava starch. Chemical characterization by FTIR and thermal characterization by TGA showed results that differentiated starting materials from the prepared SWA, thus confirming effective preparation of starch-based SWA via radiation-induced graft polymerization. SEM results visibly revealed a highly porous morphology of the synthesized SWA, substantiating its high swelling ability. Results from the field tests, performed for two seasons, revealed that the prepared SWA was able to increase the survival rate of young rubber trees planted in arid area by up to 40%, while simultaneously enhancing the growth characteristics of the young rubber trees.
Funder
National Research Council of Thailand
Subject
Polymers and Plastics,General Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献