Abstract
In this study, physicochemical and chemical methods of cellulose modification were used to increase the hydrophobicity of this natural semicrystalline biopolymer. It has been shown that acid hydrolysis of the initial cellulose increases its crystallinity, which improves hydrophobicity, but only to a small extent. A more significant hydrophobization effect was observed after chemical modification by esterification, when polar hydroxyl groups of cellulose were replaced by non-polar substituents. The esterification process was accompanied by the disruption of the crystalline structure of cellulose and its transformation into the mesomorphous structure of cellulose esters. It was found that the replacement of cellulose hydroxyls with ester groups leads to a significant increase in the hydrophobicity of the resulting polymer. Moreover, the increase of the number of non-polar groups in the ester substituent contributes to rise in hydrophobicity of cellulose derivative. Depending on the type of ester group, the hydrophobicity increased in the following order: acetate < propionate < butyrate. Therefore, tributyrate cellulose (TBC) demonstrated the most hydrophobicity among all studied samples. In addition, the mixed ester, triacetobutyrate cellulose (TAB), also showed a sufficiently high hydrophobicity. The promising performance properties of hydrophobic cellulose esters, TBC and TAB, were also demonstrated.
Subject
Polymers and Plastics,General Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献