Synthesis, Characterization, and Electrospinning of a Functionalizable, Polycaprolactone-Based Polyurethane for Soft Tissue Engineering

Author:

Hu Jin-JiaORCID,Liu Chia-Chi,Lin Chih-HsunORCID,Tuan-Mu Ho-Yi

Abstract

We synthesized a biodegradable, elastomeric, and functionalizable polyurethane (PU) that can be electrospun for use as a scaffold in soft tissue engineering. The PU was synthesized from polycaprolactone diol, hexamethylene diisocyanate, and dimethylolpropionic acid (DMPA) chain extender using two-step polymerization and designated as PU-DMPA. A control PU using 1,4-butanediol (1,4-BDO) as a chain extender was synthesized similarly and designated as PU-BDO. The chemical structure of the two PUs was verified by FT-IR and 1H-NMR. The PU-DMPA had a lower molecular weight than the PU-BDO (~16,700 Da vs. ~78,600 Da). The melting enthalpy of the PU-DMPA was greater than that of the PU-BDO. Both the PUs exhibited elastomeric behaviors with a comparable elongation at break (λ=L/L0= 13.2). The PU-DMPA had a higher initial modulus (19.8 MPa vs. 8.7 MPa) and a lower linear modulus (0.7 MPa vs. 1.2 MPa) and ultimate strength (9.5 MPa vs. 13.8 MPa) than the PU-BDO. The PU-DMPA had better hydrophilicity than the PU-BDO. Both the PUs displayed no cytotoxicity, although the adhesion of human umbilical artery smooth muscle cells on the PU-DMPA surface was better. Bead free electrospun PU-DMPA membranes with a narrow fiber diameter distribution were successfully fabricated. As a demonstration of its functionalizability, gelatin was conjugated to the electrospun PU-DMPA membrane using carbodiimide chemistry. Moreover, hyaluronic acid was immobilized on the amino-functionalized PU-DMPA. In conclusion, the PU-DMPA has the potential to be used as a scaffold material for soft tissue engineering.

Funder

Ministry of Science and Technology

National Health Research Institutes

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3